IAQ Challenges and Solutions in Net Zero Homes

Iain Walker and Brett Singer
Lawrence Berkeley National Lab

iswalker@lbl.gov
bcsinger@lbl.gov

EEBA High Performance Home Summit
Oct 18, 2018 – San Diego, CA
What is Indoor Air Quality?
Good IAQ = Low-Risk of Bad IAQ
Recipe for a low-risk home

• Start with watertight and airtight envelope
• Ventilate
• Manage humidity
• Minimize hazardous chemicals
• Integrated pest management
• Filter air as needed
• Maintain & keep it clean
• Labels and instructions
• Disinfect
Reducing air pollutant hazards

• **Reduce entry**
 • Airtight envelope and ducts
 • Radon-resistant construction
 • Low-emitting materials
 • Sealed combustion
 • Vent cooking, kitchen, bath, laundry
 • Filter supply air
 • Keep it dry

• **Increase removal rate**
 • General ventilation
 • Local exhaust
 • Filtration
What contaminants do we have to worry about?

From Inside
- Formaldehyde
- Nitrogen dioxide
- Acrolein
- Carbon monoxide
- Semivolatile organics
- Irritants
- Odors

From Inside + Outside
- Particulate matter
- Volatile Organic Compounds
- Mold and Dampness
- Allergens

From Outside
- Radon
- Ozone
Particulates outdoors

- Higher PM$_{2.5}$ associated with adverse health outcomes:
 - Death, strokes, and other cardiovascular illness
 - Increased respiratory illness
 - Linked to many other outcomes

Indoors

CalEPA Ambient Standard
12 µg/m3
Formaldehyde

Urea-formaldehyde foam insulation
Used 1930-1970s
Banned in Canada 1980, in U.S. 1983

Used as binder in plywood, MDF, and particle board; in many finished products

California Standards
Acute: 45 ppb
8h & Annual: 7 ppb
Nitrogen dioxide

- Airway irritant
- Exacerbates asthma and other respiratory diseases
- May cause asthma and increase infections
- Asthmatics, elderly, young children most susceptible

EPA Ambient Benchmarks
- 100 ppb for 1h
- 53 ppb annual
Nitrogen dioxide – high risk sources

Biggest risk is unvented heating
- frequent and long events
- more BTU/h = more NO₂

Francisco et al., Indoor Air 2010
30 homes with unvented fireplaces
4 random days of monitoring
80% had NO₂ above 100 ppb for 1h

Don’t Use These
Radon entry varies with soil, season, weather.

<table>
<thead>
<tr>
<th>Radon pCi/L</th>
<th>Non-smokers</th>
<th>Smokers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>62</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>120</td>
</tr>
<tr>
<td>20</td>
<td>36</td>
<td>260</td>
</tr>
</tbody>
</table>

Lung Cancer Risk, per 1000 Lifetime Exposure

EPA Map of Radon Zones

ALWAYS TEST EVERYWHERE

If >2 pCi/L, Test Longer or Monitor

https://www.epa.gov/radon
Reducing IAQ Risks
Filtration and air cleaning

General ventilation with clean air

Local Exhaust ventilation

Source reduction
Pollutant Source Reduction
Source Control

- Formaldehyde & VOCs
 - What’s in the house structure?
 - Building materials
 - Furniture
 - Consumer products

- Combustion and cooking
 - Local exhaust
 - Induction

- Moisture and odors
 - Local Exhaust
 - Supplemental dehumidification

CA Formaldehyde limits and regulation
Use low emitting materials and finishes

- Use certified green building materials

 ![Pharos](image1)

 ![Certified Cradle to Cradle](image2)

 ![Green Seal](image3)

- Prioritize materials with:
 - Most surface area
 - Direct paths of exposure (e.g., flooring over attic insulation)
Formaldehyde Emission Standards

FREQUENTLY ASKED QUESTIONS FOR CONSUMERS

REDUCING FORMALDEHYDE EMISSIONS FROM

Composite Wood Products

California rule effective January 1, 2009
US Formaldehyde Control Act in 2010
Products labeled starting June 1, 2018

https://www.arb.ca.gov/toxics/compwood/compwood.htm
Homes built with low-emitting materials have lower formaldehyde concentrations

42% reduction at 0.3 ach

Data adjusted for temperature, RH, house age
Dealing with Combustion in ZNE homes

No unvented combustion:

- Furnaces, boilers and water heaters either outside conditioned space or sealed combustion
- Fires/woodstoves must use outside air for combustion
- Gas cooking only if range hood exhausts to outside
- Eliminates CO from the building systems
For PM, very helpful to reduce entry from outdoors

A large fraction of indoor PM$_{2.5}$ comes from outdoors
This fraction varies, and increases as indoor sources are mitigated.

RIOPA Study1
- Los Angeles (112 homes) – 63%
- Elizabeth, NJ (80 homes) – 52%
- Houston, TX (76 homes) – 33%

MESA Air2 (353 homes) – 80%
- Baltimore,
- Chicago,
- Los Angeles,
- New York,
- Rockland,
- St. Paul,
- Winston-Salem

A tighter envelope is a better filter

- Field testing of envelope penetration of **submicron** particles
- Tight homes are good protection against outdoor particles:
 - 1.5 ACH$_{50}$ = 2% penetration
- Need data for larger particles: PM2.5

Local Exhaust: Kitchen Ventilation
Cooking & burners are important sources

CO₂ & H₂O
NO, NO₂, HONO, Formaldehyde
Ultrafine particles

Ultrafine particles

Ultrafine particles, PM₂.₅
Formaldehyde, Acetaldehyde
Acrolein, PAH
General ventilation does not protect against acute hazards

Pollutants from gas burner use

- 1400 sf, super efficient house
- ERV providing 0.5 ach
- FAU with MERV16 filter

Cooking particles and VOCs from consumer products present similar challenges

NO₂ >100 ppb in kitchen
Kitchen ventilation options

- Venting range hood
- Vented OTR Microwave
- Downdraft exhaust
- Exhaust fan on wall
- Window
- Ceiling exhaust fan
- ERV exhausting from kitchen
- HRV/ERV transfers heat (and moisture, in the case of ERV) to fresh air.
Capture efficiency is the fraction of emitted pollutants removed by the range hood.
Lab study of range hood performance

Capture increases with airflow.
Much better for back burners!

60% at 100 cfm
70-95% at 200 cfm

HVI and ASHRAE 62.2 Minimum
HVI Recommended
Lab study of range hood performance

For front burners, typical range hood captures only about 30%
As installed range hood performance

Large range of performance

Fan Speed
- 1
- 2
- 3
- 4

HVI Flows
- M Minimum
- R Recommended

Burner
- Back
- Front
- Combined
- Oven

Brett’s old range hood

Iain’s range hood

Singer et al., 2012, Indoor air
Good coverage
So-so coverage
Bad coverage
Range Hood Guidance

Builder / Contractor

- Low-resistance ducting
- Hood that covers all burners
- Quiet at 200 cfm
- Install make up air
 - If > 400 cfm
 - If <2 ACH50*

User

- Operate the hood
- Cook on back burner
- Higher setting when cooking more

*2500 sq.ft. home with 10 Pa depress limit (door slamm
What’s New for Range Hoods

Automation
- Turn on and off automatically
- Detecting cooking events

Capture Ratings
- ASTM standard test method
- HVI certification and listing
Filtration and Air Cleaning

Potential to drive PM to very low levels
- Upgrade central forced air system filter
- Use a MERV 13 filter
- 2” minimum filter depth
- Accessible and clearly labeled
- Needs a minimum air flow:
 - 2500 sq.ft. ~ 500 cfm continuous, or 1500 cfm 20/60

https://www.epa.gov/indoor-air-quality-iaq/air-cleaners-and-air-filters-home
Filtration and Air Cleaning

• Key issues:
 • **People turn them off**
 • Confusing controls
 • Noise
 • Energy
 • What if you don’t have central forced air?
 • Filter incoming ventilation air?
 • Use stand-alone devices?

https://www.epa.gov/indoor-air-quality-iaq/air-cleaners-and-air-filters-home
Ventilation and Filtration Impact on Outdoor Particles

Reference System:
- Exhaust at Title 24 rate
- MERV 4 filter on FAU

PM$_{2.5}$ inside 66-73% lower than outdoors

<table>
<thead>
<tr>
<th>Ventilation & Filtration</th>
<th>Reduction*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply, continuous, MERV13; MERV4 on FAU</td>
<td>63-66%</td>
</tr>
<tr>
<td>Supply, continuous, MERV16; MERV4 on FAU</td>
<td>97-98%</td>
</tr>
<tr>
<td>Exhaust, continuous; MERV13 on FAU, 20/60 runtime</td>
<td>97-98%</td>
</tr>
<tr>
<td>Exhaust, continuous MERV13 on m-split, low-speed cont</td>
<td>88-91%</td>
</tr>
<tr>
<td>Exhaust w/MERV16 on FAU</td>
<td>96%</td>
</tr>
</tbody>
</table>

Built 2006, 1200 sf, 5 ach50
Sealed ducts,
Local Exhaust: Wet rooms
Bathroom/Laundry Exhaust Removes Moisture, Odors, Cleaning Product Emissions

• Continuous low-flow (20 cfm) or intermittent flow (50 cfm)
• Manually operated or automated
 • Humidistat control
 • Timers
• Energy Star lists energy efficient quiet fans
Humidity Control

- Tight homes have higher indoor humidity
- Energy efficient homes have low sensible loads and little dehumidification from air conditioning
- ZEH need independent humidity control in humid SE climates
- Integrate with Smart Ventilation system to take advantage of indoor-outdoor humidity differences

FSEC Study: Variable Speed Heat Pumps + Smart Ventilation
General Ventilation
How Much Do I Need?

- Minimum requirement: ASHRAE 62.2-2016
 - Whole house flow—with blower door credit (not in MF)
 - Local exhaust in kitchens and bathrooms
 - Duct leak limits, minimum filtration
 - Existing home allowances for local exhaust
 - Requires CO alarm
 - Filtration credit
 - Measure air flows
 - Allows for “smart” energy efficient ventilation controls

- “Good” = anything “better” than this minimum
General Ventilation
Exhaust, supply or balanced?

Exhaust
- Cheapest & easiest to install and operate
- Needs good ceiling and garage wall sealing
- Easiest to measure/commission
- Interacts with combustion devices
- Must be installed in a wet room
- Can’t guarantee distribution

Balanced
- Most expensive to install
- Allows for heat recovery in cold climates
- Good for tight homes
- Good for distribution: exhaust from wet rooms, supply to living spaces
- Needs a MERV 13 filter on air inlet – maintenance issue
- Hard to measure/commission
- Best with its own ducting

Supply
- Can be ducted to living spaces
- Needs a MERV 13 filter on air inlet – maintenance issue
- Hard to measure/commission
- Caution needed in cold climates
- Uses lots of energy if integrated into CFA
Coming Soon: Smart Ventilation

- Reduce outdoor air when too hot, cold, humid, or polluted
- Reduce air flow at times of utility peak load
- Increase airflow at other times to achieve same contaminant exposure
- Sense operation of economizers, local exhaust and dryers
- Account for emissions when homes are unoccupied: better occupancy-based controls

![RIVEC Energy Savings graph]

Singer/Walker 10/16/18
Healthy Efficient New Gas Homes (HENGH)

• Air sealing is a key measure
• Prior studies raised IAQ concerns
• Since 2008, California code has required mechanical ventilation
Prior California Studies

• 1500 responses by mail
• Homes built 2002-3
• Self-reported window use
 • 50% didn’t use in winter
 • 20% didn’t use in spring & fall
• Kitchen & bath fans not used routinely

Field study: 2006-7 (CNHS)

• 108 homes, built 2002-05, 98% electric

HENGH Field Study

- 70 detached homes, built 2011-17
- Natural gas cooking burners
- Measurements in 2016-2018
- Characterized ventilation equipment
- Measured IAQ & ventilation use, tracked activities for 1 week
- Windows closed; Central MV operating

Core Funding

In-Kind Support
HENGH Field Study

- Average floor area: 2700 sq.ft.
- Average envelope leakage: 4.5 ACH50
- Average density: 1000 sf per person
- 90% of homes less than three years old
Central MV systems exceeded required airflow

Mean required: 63 cfm
Mean provided: 96 cfm

~50% above code

• Easy to verify:
 • Continuous exhaust (N=55)
 • Intermittent exhaust (N=9)

• Hard to verify:
 • Continuous inline fan connected to central forced air system (N=4)
 • Central fan integrated supply with motorized damper (N=2)
MV provided 78% of total estimated outdoor air

Median Air Change Rate: 1/3 ACH

Homes ranked by mechanical airflow
Code-compliant ventilation in 85% of master baths
1/3 of other bathrooms below code
Most range hoods met minimum airflow
Many OTR microwaves did not
PM$_{2.5}$ and formaldehyde lower in HENGH

<table>
<thead>
<tr>
<th>Median Indoor Concentration</th>
<th>CNHS* – 98% Electric 2006–07</th>
<th>HENGH - Gas Homes 2016–18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyde</td>
<td>30 ppb</td>
<td>18 ppb</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>10.4 microg/m3</td>
<td>5.0 microg/m3</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>3.1 ppb</td>
<td>4.4 ppb</td>
</tr>
</tbody>
</table>

*Offermann (2009).
Only 1 in 4 homes had the whole house ventilation system running as found.
Labels made a difference

<table>
<thead>
<tr>
<th>Whole-House Ventilation Control</th>
<th>Controller Labelled?</th>
<th>% On As-Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>On/Off Switch</td>
<td>No (N=42)</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Yes (N=12)</td>
<td>58%</td>
</tr>
<tr>
<td>Programmable Controller</td>
<td>No (N=10)</td>
<td>50%</td>
</tr>
<tr>
<td>Thermostat</td>
<td>No (N=2)</td>
<td>0%</td>
</tr>
<tr>
<td>Breaker Panel</td>
<td>No (N=1)</td>
<td>100%</td>
</tr>
<tr>
<td>No Controller</td>
<td>No (N=3)</td>
<td>100%</td>
</tr>
</tbody>
</table>
Labels not always clear

To maintain minimum levels of outside air ventilation required by the State of California, this fan should be on at all times when the building is occupied, unless there is outdoor air contamination.
Keep fan “ON” at all times except in case of outdoor air contamination or if home is vacant for more than 7 days.
Building America IAQ Study

- Target 32 homes per climate zone (CZ):
 ~50% with mechanical ventilation (MV)

- Characterize home, mechanical equipment

- Monitor ventilation, IAQ, activities for 1 week

- Repeat in 8 homes per CZ with/out MV operating
Low-cost sensors for air quality monitoring

Sensors generate signals in response to environmental conditions

Data sent to cloud & displays; may be stored onboard

Cloud stores data, presents visualizations

Local displays indicate hazards and suggest mitigating actions

Calibrations translate signals to data
Available info on sensor performance

- EPA has done some work focusing on outdoors
 https://www.epa.gov/air-sensor-toolbox

- South Coast AQMD tests outdoor & in chambers
 http://www.aqmd.gov/aq-spec/home
LBNL Evaluation of Consumer PM Monitors

<table>
<thead>
<tr>
<th>Device</th>
<th>Measured Parameters</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>PM, T, RH</td>
<td>1 sec</td>
</tr>
<tr>
<td>AVN</td>
<td>PM${2.5}$, PM${10}$, CO$_2$, T, RH</td>
<td>10 sec – 15 min</td>
</tr>
<tr>
<td>AQE</td>
<td>PM, T, RH</td>
<td>1 min</td>
</tr>
<tr>
<td>AWA</td>
<td>PM, CO$_2$, VOC, T, RH</td>
<td>10 sec – 5 min</td>
</tr>
<tr>
<td>FOB</td>
<td>PM, CO$_2$, VOC, T, RH</td>
<td>5 min</td>
</tr>
<tr>
<td>PA</td>
<td>PM${1.0}$, PM${2.5}$, PM$_{10}$, T, RH</td>
<td>80 sec</td>
</tr>
<tr>
<td>SPK</td>
<td>PM, # particles, T, RH</td>
<td>1 min</td>
</tr>
</tbody>
</table>

These use mass-produced particle sensors that cost <$10 to $35
Evaluated for typical sources of residential PM

Burned incense, candles and cigarettes

Heated pots of water, an oven, a hair dryer, and an electric burner

Cooked green beans, bacon, pancakes, toast, heated oil

Released AZ test dust, shook a dust mop, and operated an ultrasonic humidifier
Four monitors detected most sources and quantitatively measured all large sources of PM$_{2.5}$

These 4 could be used in managing IAQ.

Two consumer monitors detected many sources but not quantitatively.

One monitor was not informative.

Consumer monitors not suitable to detect & control ultrafine particles.

Results should be verified in homes.

- What fraction of PM$_{2.5}$ detected?
- How durable are the devices?

Complete study: Singer et al. 2018, Indoor Air
Many use kitchen exhaust only “as needed”

<table>
<thead>
<tr>
<th>Self-reported usage</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most times (>75%) when cooktop or oven used</td>
<td>44</td>
<td>13%</td>
</tr>
<tr>
<td>Most times when cooktop used, but not oven</td>
<td>39</td>
<td>11%</td>
</tr>
<tr>
<td>About half the time</td>
<td>45</td>
<td>13%</td>
</tr>
<tr>
<td>Infrequently, only when needed</td>
<td>113</td>
<td>32%</td>
</tr>
<tr>
<td>Never</td>
<td>35</td>
<td>10%</td>
</tr>
<tr>
<td>No exhaust fan</td>
<td>73</td>
<td>21%</td>
</tr>
<tr>
<td>Problems Affecting Occupant Comfort a Few Times per Week or More Frequently</td>
<td>Online Survey Built 2002-8 SoCal (N=2271)</td>
<td>Field Study Built 2011-7 California (N=70)</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Too hot in summer</td>
<td>41%</td>
<td>31%</td>
</tr>
<tr>
<td>Too cold in winter</td>
<td>20%</td>
<td>29%</td>
</tr>
<tr>
<td>Not enough air movement</td>
<td>18%</td>
<td>21%</td>
</tr>
<tr>
<td>Too hot in winter</td>
<td>10%</td>
<td>14%</td>
</tr>
<tr>
<td>Indoor air too dry</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td>Too cold in summer</td>
<td>9%</td>
<td>4%</td>
</tr>
<tr>
<td>Too much air movement</td>
<td>5%</td>
<td>1%</td>
</tr>
<tr>
<td>Musty odor</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Indoor air too damp</td>
<td>2%</td>
<td>1%</td>
</tr>
</tbody>
</table>
Take the Berkeley New Home IAQ Survey

https://iaqsurvey.lbl.gov/
EXTRA SLIDES
Recipe for good IAQ in ZEH

• Take care of water / moisture
 • drainage, vapor barriers, etc.
• No combustion appliance uses house air
 • Except gas cooking w/good range hood
• Low-emitting materials
• Induction cooking?
• Exhaust ventilation in wet rooms
 • Energy Star quiet & efficient fans
 • Kitchens must vent to outside
 • Kitchen MUA >400 cfm and < 2ACH50
 • Automate range hoods and bathroom exhaust?
• Test for Radon

• Whole House Ventilation
 • ASHRAE 62.2 minimum
 • Balanced best in tight homes
• MERV 13 filters on supply ventilation and central forced air
 • 2 in., sealed filter slot
 • Minimum runtime
• Dedicated dehumidification in humid SE climates
• Label everything
• Easy access for maintenance
Fine particulate matter (PM$_{2.5}$)

- Higher PM$_{2.5}$ -> badness
 - Death, strokes, and other cardiovascular illness
 - Increased respiratory illness
 - Linked to many other outcomes
Sources of PM$_{2.5}$ in homes

Outdoor pollution is largest source overall

Indoor sources more important if used often in your home

CalEPA Ambient Standard

12 μg/m3
Which IAQ parameters do we want to measure in homes?

- Temperature and humidity
- CO$_2$ for demand control ventilation
- VOCs
- Odors

- Indoor pollutants
 - PM$_{2.5}$, PM$_{10}$, ultrafines
 - Acrolein, NO$_2$, CO
 - Formaldehyde, radon
 - Irritants
 - Allergens

- Outdoor pollutants
 - Diesel PM / black carbon
 - Ozone
 - PM$_{2.5}$, PM$_{10}$, ultrafines, NO$_2$

- Dampness & mold
Which IAQ parameters do we want to measure in homes?

- Indoor pollutants
 - PM$_{2.5}$, PM$_{10}$, ultrafines
 - Acrolein, NO$_2$, CO
 - Formaldehyde, radon
 - Irritants
 - Allergens

- Outdoor pollutants
 - Diesel PM / black carbon
 - Ozone
 - PM$_{2.5}$, PM$_{10}$, ultrafines, NO$_2$

- Dampness & mold

Available & affordable
Available, but costly
Coming soon?
✗ Not needed

- Temperature and humidity
- CO$_2$ for demand control ventilation
- VOCs
- Odors
• Compiles published studies
• Critical review
• High-level summary
• Periodically updated
Most homes between 0.2 and 0.6 ach

Median:
- HENGH - 0.33 h$^{-1}$
- CNHS - 0.25 h$^{-1}$
Field study of range hood benefits

Singer et al., 2017, Building Environment
Installed range hoods provide varying benefits.

Singer et al., 2017, Building Environment
Range Hood Guidance

Builder / Contractor
- Low-resistance ducting
- Hood that covers all burners
- Quiet at 200 cfm

User
- Operate the hood
- Cook on back burner
- Higher setting when cooking more

Roofer
- Don’t drop debris down the vent

Materials (287 g) extracted from RH vent.
Photo & arrangement: M. Lunden

Singer/Walker
10/16/18
What pollutants do we have to worry about?

From Inside

- **Particulate matter:**
 - PM$_{10}$, PM$_{2.5}$, Ultrafine particles
 - Metals; Acids; Condensed organics

- **Nitrogen dioxide:** NO$_2$

- **Carbon monoxide:** CO

- **Ozone**

From Inside + Outside

- **Gas-phase organics (VOC):**
 - Formaldehyde
 - Other aldehydes
 - Benzene
 - Acrolein
 - Organic acids
 - Semi-volatile organics (SVOC)

From Outside

- **Mold and dampness**
- **Allergens in air and dust**
- **Bioeffluents including CO$_2$**
- **Viruses (maybe)**
- **Radon**
Formaldehyde
From building materials
Half of the HENGH households reported using range hood sometimes or less frequently.

In survey of 2781 occupants: Lower usage of recirculating hoods.

Reasons for Not Using Range Hood:
- Open window instead
- Ineffective
- Too noisy
- Forgot
- Not needed

Number of Responses
Nitrogen Dioxide

Exceeds Outdoor Standards in > 60 million homes
Carbon Monoxide from BAD combustion
Exceeds Outdoor Standards in 5-10 million homes
Kills 180 people/year
150 of those are very dumb
Healthy Efficient New Gas Homes Study (HENGH)

Rengie Chan

Yang-Seon Kim

Brett Singer

Iain Walker

BERKELEY LAB
STATE OF CALIFORNIA ENERGY COMMISSION
Building America U.S. Department of Energy
PG&E
SoCalGas
gti®
Lab study of range hood performance

Capture increases with airflow. Much better for back burners!

For front burners, range hood at 100 cfm captures ~30%
Air pollutants & Allergens

Odors

Moisture