IAQ Challenges and Solutions in Net Zero Homes

Iain Walker and Brett Singer

Lawrence Berkeley National Lab

iswalker@lbl.gov

bcsinger@lbl.gov

EEBA High Performance Home Summit Oct 18, 2018 – San Diego, CA

What is Indoor Air Quality?

Good IAQ = Low-Risk of Bad IAQ

Recipe for a low-risk home

- Start with watertight and airtight envelope
- Ventilate
- Manage humidity
- Minimize hazardous chemicals
- Integrated pest management
- Filter air as needed
- Maintain & keep it clean
- Labels and instructions
- Disinfect

Reducing air pollutant hazards

Reduce entry

- Airtight envelope and ducts
- Radon-resistant construction
- Low-emitting materials
- Sealed combustion
- Vent cooking, kitchen, bath, laundry
- Filter supply air
- Keep it dry

Increase removal rate

- General ventilation
- Local exhaust
- Filtration

The Builder's Guide to IAQ

> They're still going to know you didn't read the book

What contaminants do we have to worry about?

From Inside

Formaldehyde Nitrogen dioxide Acrolein

Carbon monoxide

Semivolatile organics

Irritants

Odors

From Inside + Outside

Particulate matter

Volatile Organic Compounds

Mold and Dampness Allergens **From Outside**

Radon Ozone

Particles

outdoors

indoors

- Higher PM_{2.5} associated with adverse health outcomes:
 - Death, strokes, and other cardiovascular illness
 - Increased respiratory illness
 - Linked to many other outcomes

CalEPA Ambient Standard 12 μg/m³

Singer/Walker 10/16/18

Formaldehyde

Used as binder in plywood, MDF, and particle board; in many finished products

California Standards Acute: 45 ppb 8h & Annual: 7 ppb

Urea-formaldehyde foam insulation Used 1930-1970s Banned in Canada 1980, in U.S. 1983

8 Singer/Wal 10/16/18

Nitrogen dioxide

- Airway irritant
- Exacerbates asthma and other respiratory diseases
- May cause asthma and increase infections
- Asthmatics, elderly, young children most susceptible

EPA Ambient Benchmarks 100 ppb for 1h 53 ppb annual

Singer/Walker 10/16/18

Nitrogen dioxide – high risk sources

Biggest risk is unvented heating
frequent and long events
more BTU/h = more NO₂

Francisco et al., Indoor Air 2010
30 homes with unvented fireplaces
4 random days of monitoring
80% had NO₂ above 100 ppb for 1h

Don't Use These

Radon

Radon entry varies with soil, season, weather.

Lung Cancer Risk, per 1000 Lifetime Exposure

Radon pCi/L	Non- smokers	Smokers
2	4	32
4	7	62
8	15	120
20	36	260

Reducing IAQ Risks

12 Singer/Walker 10/16/18

Pollutant Source Reduction

14 Singer/Walker 10/16/18

Source Control

- Formaldehyde & VOCs
 - What's in the house structure?
 - Building materials
 - Furniture
 - Consumer products

- Combustion and cooking
 - Local exhaust
 - Induction
- Moisture and odors
 - Local Exhaust
 - Supplemental dehumidificiation

Use low emitting materials and finishes

• Use certified green building materials

- Prioritize materials with:
 - Most surface area
 - Direct paths of exposure (e.g., flooring over attic insulation)

Formaldehyde Emission Standards

California Environmental Protection Agency | AIR RESOURCES BOARD

FREQUENTLY ASKED QUESTIONS FOR CONSUMERS

REDUCING FORMALDEHYDE EMISSIONS FROM

Composite Wood Products

California rule effective January 1, 2009 US Formaldehyde Control Act in 2010 Products labeled starting June 1, 2018

https://www.arb.ca.gov/toxics/compwood/compwood.htm

Homes built with low-emitting materials have lower formaldehyde concentrations

Hult et al., Indoor Air, 2015 – Compares Indoor Air Plus to Conventional New Homes in US

Dealing with Combustion in ZNE homes

No unvented combustion:

- Furnaces, boilers and water heaters either outside conditioned space or sealed combustion
- Fires/woodstoves must use outside air for combustion
- Gas cooking only if range hood exhausts to outside
- Eliminates CO from the building systems

For PM, very helpful to reduce entry from outdoors

A large fraction of indoor PM_{2.5} comes from outdoors This fraction varies, and increases as indoor sources are mitigated.

RIOPA Study¹

- Los Angeles (112 homes) 63%
- Elizabeth, NJ (80 homes) 52%

Houston, TX (76 homes) – 33%

MESA Air² (353 homes) – 80%

- Baltimore,
- Chicago,
- Los Angeles,
- New York,
- Rockland,
- St. Paul,
- Winston-Salem

A tighter envelope is a better filter

- Field testing of envelope penetration of submicron particles
- Tight homes are good protection against outdoor particles:
 - 1.5 ACH₅₀ = 2% penetration
- Need data for larger particles: PM2.5

Stephens, B., & Siegel, J. A. (2012). Penetration of ambient submicron particles into single-family residences and associations with building characteristics. *Indoor Air*, 22(6), 501–513. doi:10.1111/j. 1600-0668/2012:00779.x

Local Exhaust: Kitchen Ventilation

22 Singer/Walker 10/16/18

Cooking & burners are important sources

NO,NO₂, HONO, Formaldehyde

Ultrafine particles

Ultrafine particles

Ultrafine particles, PM_{2.5} Formaldehyde, Acetaldehyde Acrolein, PAH

23

10/16/18

General ventilation does not protect against acute hazards

Pollutants from gas burner use

- 1400 sf, super efficient house
- ERV providing 0.5 ach
- FAU with MERV16 filter

Cooking particles and VOCs from consumer products present similar challenges

24 Singer/Walker Singer 10/16/18 Singer

Kitchen ventilation options

Lab study of range hood performance

Capture efficiency is the fraction of emitted pollutants removed by the range hood.

Singer/Walker

10/16/18

As installed range hood performance

Good coverage

So-so coverage

Bad coverage

Range Hood Guidance

Builder / Contractor

- Low-resistance ducting
- Hood that covers all burners
- Quiet at 200 cfm
- Install make up air
 - If > 400 cfm
 - If <2 ACH50*

User

- Operate the hood
- Cook on back burner
- Higher setting when cooking more
- ³³ *2500 sq.ft. home with 10 Pa depress limit (door slarr

Induction appears to have lower emissions of ultrafine particles

What's New for Range Hoods

Automation

- Turn on and off automatically
- Detecting cooking events

Capture Ratings

- ASTM standard test method
- HVI certification and listing

CERTIFIED HOME VENTILATING PRODUCTS DIRECTORY

ertified Ratings in Air Delivery, Sound and Energy for Accurate Specifications and Comparisons

Standard Test Method for Measuring Capture Efficiency of Domestic Range Hoods¹

This standard is issued under the fixed designation E3087; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epilonio (a) indicates an eliforai change since the last revision or reapproval.

national standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the looment of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Filtration and Air Cleaning

Potential to drive PM to very low levels

- Upgrade central forced air system filter
- Use a MERV 13 filter
- 2" minimum filter depth
- Accessible and clearly labeled
- Needs a minimum air flow:
 - 2500 sq.ft. ~ 500 cfm continuous, or 1500 cfm 20/60

https://www.epa.gov/indoor-air-quality-iaq/ air-cleaners-and-air-filters-home

Filtration and Air Cleaning

- Key issues:
 - People turn them off
 - Confusing controls
 - Noise
 - Energy
- What if you don't have central forced air?
 - Filter incoming ventilation air?
 - Use stand-alone devices?

Ventilation and filtration impact outdoor particles

Built 2006, 1200 sf, 5 ach50 Sealed ducts,

Reference System: •Exhaust at Title 24 rate •MERV 4 filter on FAU

PM_{2.5} inside 66-73% lower than outdoors

Ventilation & Filtration	Reduction*
Supply, continuous, MERV13; MERV4 on FAU	63-66%
Supply, continuous, MERV16; MERV4 on FAU	97-98%
Exhaust, continuous; MERV13 on FAU, 20/60 runtime	97-98%
Exhaust, continuous MERV13 on m-split, low-speed cont	88-91%
Exhaust w/MERV16 on FAU	96%

37 Singer - 9/6/2018 Singer et al., Indoor Air, 201

Local Exhaust: Wet rooms

Bathroom/Laundry Exhaust Removes Moisture, Odors, Cleaning Product Emissions

- Continuous low-flow (20 cfm) or intermittent flow (50 cfm)
- Manually operated our automated
 - Humidistat control
 - Timers
- Energy Star lists energy efficient quiet fans

Humidit

Sensor

Light

Silent

Humidity Control

- Tight homes have higher indoor humidity
- Energy efficient homes have low sensible loads and little dehumidification from air conditioning
- ZEH need independent humidity control in humid SE climates
- Integrate with Smart Ventilation system to take advantage of indoor-outdoor humidity differences

Singer/Walker

10/16/18

40

General Ventilation

How Much Do I Need?

- Minimum requirement: ASHRAE 62.2-2016
 - Whole house flow—with blower door credit (not in MF)
 - Local exhaust in kitchens and bathrooms
 - Duct leak limits, minimum filtration
 - Existing home allowances for local exhaust
 - Requires CO alarm
 - Filtration credit
 - Measure air flows
 - Allows for "smart" energy efficient ventilation controls
- "Good" = anything "better" than this minimum

ANSI/ASHRAE Standard 62.2-2013 (Supersedes ANSI/ASHRAE Standard 62.2-2010) Includes ANSI/ASHRAE addenda listed in Appendix C

Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

See Appendix C for approval dates by the ASHRAE Standards Committee, the ASHRAE Board of Directors, and the American National Standards Institute.

This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. The change submittal form, instructions, and dealines may be obtained in electronic form the AST-MRE website inwww.astraa.ord or in oaser form from the Manaeer of

General Ventilation

Exhaust, supply or balanced?

Exhaust

- Cheapest & easiest to install and operate
- Needs good ceiling and garage wall sealing
- Easiest to measure/ commission
- Interacts with combustion devices
- Must be installed in a wet room
- Can't guarantee distribution

Balanced

- Most expensive to install
 Allows for heat recovery in cold climates
- Good for tight homes
- Good for distribution: exhaust from wet rooms, supply to living spaces
- Needs a MERV 13 filter on air inlet –
 - maintenance issue
- Hard to measure/ commission
- Best with its own ducting

Supply

- Can be ducted to living spaces
- Needs a MERV 13 filter on air inlet– maintenance issue
- Hard to measure/ commission
- Caution needed in cold climates
- Uses lots of energy if integrated into CFA

Coming Soon: Smart Ventilation

- Reduce outdoor air when too hot, cold, humid, or polluted
- Reduce air flow at times of utility peak load
- Increase airflow at other times to achieve same contaminant exposure
- Sense operation of economizers, local exhaust and dryers
- Account for emissions when homes are unoccupied: better occupancybased controls

Healthy Efficient New Gas Homes (HENGH)

- Air sealing is a key measure
- Prior studies raised IAQ concerns
- Since 2008, California code has required mechanical ventilation

Prior California Studies

New Home Survey: 2004-5

- 1500 responses by mail
- Homes built 2002-3
- Self-reported window use
 - 50% didn't use in winter
 - 20% didn't use in spring & fall
- Kitchen & bath fans not used routinely

Field study: 2006-7 (CNHS)

• 108 homes, built 2002-05, 98% electric

Price & Sherman, 2006, LBNL-59620; Offermann, 2009, CEC_500_2009_085

HENGH Field Study

- 70 detached homes, built 2011-17
- Natural gas cooking burners

- Measurements in 2016-2018
- Characterized ventilation equipment
- Measured IAQ & ventilation use, tracked activities for 1 week
- Windows closed; Central MV operating

In-Kind Support

HENGH Field Study

- Average floor area: 2700 sq.ft.
- Average envelope leakage: 4.5 ACH50
- Average density: 1000 sf per person
- 90% of homes less than three years old

Central MV systems exceeded required airflow

Mean required: 63 cfm Mean provided: 96 cfm

- Easy to verify:
 - Continuous exhaust (N=55)
 - Intermittent exhaust (N=9)
- Hard to verify:
 - Continuous inline fan connected to central forced air system (N=4)
 - Central fan integrated supply with motorized damper (N=2)

MV provided 78% of total estimated outdoor air

50

Code-compliant ventilation in 85% of master baths 1/3 of other bathrooms below code

51 Singer/Walker 10/16/18

Measured Exhaust Fan Flow (cfm)

Most range hoods met minimum airflow Many OTR microwaves did not

$\mathrm{PM}_{2.5}$ and formal dehyde lower in HENGH

Median Indoor Concentration	CNHS [*] – 98% Electric 2006–07	HENGH - Gas Homes 2016–18
Formaldehyde	30 ppb	18 ppb
PM _{2.5}	10.4 microg/m ³	5.0 microg/m ³
NO ₂	3.1 ppb	4.4 ppb

Only **1** in **4** homes had the whole house ventilation system running as found.

Labels made a difference

Whole-House Ventilation Control	Controller Labelled?	% On As-Found
On/Off Switch No (N=42)		5%
	Yes (N=12)	58%
Programmable Controller	No (N=10)	50%
Thermostat	No (N=2)	0%
Breaker Panel	No (N=1)	100%
No Controller	No (N=3)	100%

LAU (3) 252

Labels not always clear

X CONTINUOUS DUTY

To maintain minimum levels of outside air ventilation required by the State of California, this fan should be on at all times when the building is occupied, unless there is outdoor air contamination.

Building America IAQ Study

Target 32 homes per climate zone (CZ): ~50% with mechanical ventilation (MV)

- Characterize home, mechanical equipment
- Monitor ventilation, IAQ, activities for 1 week
- Repeat in 8 homes per CZ with/out MV operating

may be stored onboard

BERKELEY LAR

Available info on sensor performance

- EPA has done some work focusing on outdoors https://www.epa.gov/air-sensor-toolbox
- South Coast AQMD tests outdoor & in chambers http://www.aqmd.gov/aq-spec/home

LBNL Evaluation of Consumer PM Monitors

Evaluated for typical sources of residential PM

Burned incense, candles and cigarettes

Heated pots of water, an oven, a hair dryer, and an electric burner

Cooked green beans, bacon, pancakes, toast, heated oil

Released AZ test dust, shaked a dust mop, and operated an ultrasonic humidifier

Four monitors detected most sources and quantitatively measured all large sources of PM_{2.5}

These 4 could be used in managing IAQ.

- Two consumer monitors detected many sources but not quantitatively.
- One monitor was not informative.
- Consumer monitors not suitable to detect & control ultrafine particles.

Results should be verified in homes.

- What fraction of PM_{2.5} detected?
- How durable are the devices?

Many use kitchen exhaust only "as needed"

Self-reported usage	Number	Percent
Most times (>75%) when cooktop or oven used	44	13%
Most times when cooktop used, but not oven	39	11%
About half the time	45	13%
Infrequently, only when needed	113	32%
Never	35	10%
No exhaust fan	73	21%

Problems Affecting Occupant Comfort a Few Times per Week or More Frequently	Online Survey Built 2002-8 SoCal (N=2271)	Field Study Built 2011-7 California (N=70)
Too hot in summer	41%	31%
Too cold in winter	20%	29%
Not enough air movement	18%	21%
Too hot in winter	10%	14%
Indoor air too dry	11%	9%
Too cold in summer	9%	4%
Too much air movement	5%	1%
Musty odor	3%	1%
Indoor air too damp	2%	1%
Singer/Walker	_ /3	

Take the Berkeley New Home IAQ Survey

https://iaqsurvey.lbl.gov/

EXTRA SLIDES

Recipe for good IAQ in ZEH

- Take care of water / moisture
 - drainage, vapor barriers, etc.
- No combustion appliance uses house air
 - Except gas cooking w/good range hood
- Low-emitting materials
- Induction cooking?
- Exhaust ventilation in wet rooms
 - Energy Star quiet & efficient fans
 - Kitchens must vent to outside
 - Kitchen MUA >400 cfm and < 2ACH50
 - Automate range hoods and bathroom exhaust?
- Test for Radon

- Whole House Ventilation
 - ASHRAE 62.2 minimum
 - Balanced best in tight homes
- MERV 13 filters on supply ventilation and central forced air
 - 2 in., sealed filter slot
 - Minimum runtime
- Dedicated dehumidification in humid SE climates
- Label everything
- Easy access for maintenance

Fine particulate matter (PM_{2.5})

- Higher PM_{2.5} -> badness
 - Death, strokes, and other cardiovascular illness
 - Increased respiratory illness
 - Linked to many other outcomes

Sources of PM_{2.5} in homes

Outdoor pollution is largest source overall

Indoor sources more important if used often in your home

<u>CalEPA Ambient Standard</u> 12 μg/m³

Which IAQ parameters do we want to measure in homes?

- Temperature and humidity
- CO₂ for demand control ventilation
- VOCs
- Odors

- Indoor pollutants
 - PM_{2.5}, PM₁₀, ultrafines
 - Acrolein, NO₂, CO
 - Formaldehyde, radon
 - Irritants
 - Allergens
- Outdoor pollutants
 - Diesel PM / black carbon
 - Ozone
 - PM_{2.5}, PM₁₀, ultrafines, NO₂
- Dampness & mold

Which IAQ parameters do we want to measure in homes?

- Temperature and humidity
- CO₂ for demand control ventilation
- VOCs
- Odors
- Available & affordable Available, but costly Coming soon? X Not needed

- Indoor pollutants
 - PM_{2.5}, PM₁₀, ultrafines
 - Acrolein, NO₂, CO
 - Formaldehyde, radon
 - Irritants
 - Allergens
- Outdoor pollutants
 - Diesel PM / black carbon
 - Ozone
 - PM_{2.5}, PM₁₀, ultrafines, NO₂
- Dampness & mold

iaqscience.lbl.gov

- Compiles published studies
- Critical review
- High-level summary
- Periodically updated

Topics

Building Ventilation

Ventilation is the supply of outdoor air to a building. This section discusses how ventilation rates influence indoor air quality and occupant health and performance.

Dampness and Mold

Topics discussed include the causes of excess building dampness, the influence of dampness on indoor biological and organic chemical contaminants, and the effects of dampness and of dampness-related indoor contaminants on people's health.

Volatile Organic Compounds

Indoor volatile organic compounds, or VOCs, are carbon-containing organic chemicals emitted from a variety of sources. The implications of indoor VOCs for health are addressed.

Human Performance

This section discusses how the performance of office and school work is affected by indoor environmental conditions and by the features of buildings that influence indoor environmental conditions.

National-Level Opportunities

This section provides estimates at the national level of some of the benefits and costs of taking practical steps to improve indoor environmental conditions in U.S. buildings.

Air Cleaning

Indoor air cleaning is the process of intentionally removing pollutants from indoor air, or from the outdoor air as it enters a building. This section of the web site addresses the relationship of air cleaning to health and perceived air quality, focusing on application of air cleaning to buildings outside of the health care and industrial sectors.

Climate Change

Climate change will modify outdoor environmental conditions which, in turn, will

IAQ in Schools

This section provides an overview of indoor air quality (IAQ) in schools and its influence

Most homes between 0.2 and 0.6 ach

Field study of range hood benefits

Singer et al., 2017, Building Environment

Singer/Walker 75 10/16/18

Installed range hoods provide varying benefits

Singer/Walker Singer ebal6/2017, Building Environment

Range Hood Guidance

Builder / Contractor

- Low-resistance ducting
- Hood that covers all burners
- Quiet at 200 cfm

User

- Operate the hood
- Cook on back burner
- Higher setting when cooking more

Roofer

• Don't drop debris down the vent

Materials (287 g) extracted from RH vent. Photo & arrangement: M. Lunden

What pollutants do we have to worry about? From Inside From Inside + Outside From Outside

Particulate matter:

- PM₁₀, PM_{2.5}, Ultrafine particles
- Metals; Acids; Condensed organics

Nitrogen dioxide: NO₂

Carbon monoxide: CO

Gas-phase organics (VOC)

- Formaldehyde
- Other aldehydes
- Benzene
- Acrolein
- Organic acids
- Semi-volatile organics (SVOC)

Ozone

Mold and dampness Allergens in air and dust

Bioeffluents including CO₂ Viruses (maybe)

Radon

Formaldehyde From building materials

79

10/16/

Half of the HENGH households reported using range hood sometimes or less frequently

Nitrogen Dioxide

Exceeds Outdoor Standards in> 60 million homes

81

Carbon Monoxide from BAD combustion Exceeds Outdoor Standards in 5-10 million homes

Kills 180 people/year 150 of those are very dumb

Healthy Efficient New Gas Homes Study (HENGH)

Rengie Chan

Yang-Seon Kim

Brett Singer

lain Walker

Lab study of range hood performance

For front burners, range hood at 100 cfm captures ~30%

Odors

Air pollutants

& Allergens

Central Texas Allergy & Asthma Center Pollen Chart Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Grasses Mold Spores Ash Sycamore Marsh Elder Pigweed Oak Fall Elr Mesauite all Elm Red Berry Juniper Privet Sage Mountain Cedar Mountain Ragweeds Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Dust mite, House Dust, Animal Dander, Feathers, Indoor Molds, Dog, Cat, Bird etc

Moisture

©Central Texas Allergy & Asthma Center